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A new method of analyzing the orientational structure of molecular solids is proposed. It is based on 
an expansion of the coherent scattering-length density of a molecule into a complete set of orthonormal 
functions. Explicit expressions for the structure factor are given in the three-dimensional case with use 
of symmetry-adapted cubic harmonics and for planar molecules with use of trigonometric functions. 
The method is especially well suited for analysis of plastic crystalline phases, orientationally disordered 
phases and ordered phases with molecules performing large librational motions. The treatment reveals 
a close analogy between orientationally ordered or disordered systems and magnetic systems. 

I. Introduction 

In structure analyses of neutron or X-ray data, the 
thermal motion of the atoms in a crystal is usually de- 
scribed by harmonic Debye-Waller factors, which may 
be anisotropic if the site symmetry of the specific atom 
is non-cubic. Such an approach is valid if the atoms 
perform small translational motions about well defined 
equilibrium positions. Deviations are to be expected 
if the atomic displacements are large and anharmonic 
effects become important. This occurs quite often in 
molecular crystals where large librational amplitudes 
have to be ascribed to molecules or molecular groups. 

There have been several attempts to include such 
effects in the ensemble-averaged density distribution 
(also called probability density function: pdf). A review 
on this topic has been published recently (Crystallo- 
graphic Computing, 1970). Principally two ways have 
been chosen: (i) inclusion of higher cumulants beyond 
bilinear terms in the Debye-Waller factor (Johnson, 
1969); (ii) application of mechanistic models, which 
take into account librational amplitudes of molecules 
or molecular groups in a solid (Willis & Pawley, 1970; 
Pawley & Willis, 1970). There is, however, a large 
group of molecular solids for which neither method 
seems to be well suited, for instance the orientationally 
disordered crystals, where no well defined equilibrium 
positions exist for the atoms. Examples are the dis- 
ordered phases of the ammonium halides or the group 
of crystals possessing a plastic (usually high-tempera- 
ture) phase. Quite often these plastic phases are formed 
by molecules of high internal symmetry, (e.g. octa- 
hedral or tetrahedral symmetry). 

The molecules can be treated as rigid units, if the 
frequencies of the internal modes of vibrations are 
high compared to those of the external (or lattice) 
modes. In dealing with the structure analysis of the 
plastic phase of a solid formed by rigid molecules, a 
method different from usual procedures seems to be 
worthwhile. Neutron-diffraction experiments are es- 
pecially well suited, as the nuclear scattering can be 
described by delta functions at the position of the 
nuclei. 

II. Method 

In the Following the coherent, elastic scattering func- 
tion of a crystal which contains essentially rigid mol- 
ecules performing rotational motions will be calculated. 
For neutron scattering the structure factor F(Q) may 
be written as the Fourier transform of the scattering 
length density b(r') 

N ~ " "  f F (Q)=  ~ ~. exp ( iQ. r')b~, (r ' )dr ' .  (2.1) 
j = l / ~ l  v= l  cell v ' 

Q is the momentum transfer of the scattered neutrons, 
j enumerates the N molecules within the unit cell. The 
atoms in a molecule are arranged in n shells of atoms 
around the molecular centre and the/~th shell contains 

n, atoms enumerated by v. b~ (r') is the ensemble- 'v 

averaged scattering-length density of the specific atom, 
that is, its nuclear density weighted with its coherent 
neutron-scattering length. The scattering-length den- 
sities of the atoms within a shell are combined to a 
single quantity : 

n ~  

b ~ (r ' )= ~ b } (r ' ) .  (2.2) 

r' may be decomposed into r ' = R + r ,  where R is a 
vector pointing to the centre of mass of a molecule. 
The scattering-length density of the (j,/0th shell may 
then be written as: 

b~ (r') = I pJ(R)g]~ (R I r ' )dR.  (2.3) 

Here pJ(R) is the probability of finding the centre of 
mass of the j th  molecule at R and g~ (R I r') is the 
conditional probability (weighted by the scattering 
length) of finding a scatterer at r', if the molecular 
centre of mass is at R. The influence of correlations 
between orientational motions and centre-of-mass 
translational motions has been discussed recently 
(Schomaker & Trueblood, 1968). We will consider a 
situation where such correlations may be neglected. 
Then g~ (R I r') may be replaced by a~ (r), a function 
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which depends only on the position relative to the in- 
stantaneous molecular centre. 

g],(R I r ' )=a~ ' J • ( r  - R ) = a u ( r  ) . (2.4) 

Inserting equations (2.2) to (2.4) into (2.1) and applying 
the convolution theorem we obtain" 

× f ol, exp (,Qr o (r dr. 

Hence the translational and orientational motions may 
be treated separately. We will not go into the details 
of the translational part: generally, pJ(R) will give rise 
to an anisotropic (harmonic) Debye-Waller factor; in- 
clusion of higher cumulants may be necessary. We re- 
write (2.5) as 

F(Q)= ~ exp (iQR~) exp [ -  Wj(Q)] ~ F~, t (Q) (2.6) 
J u 

where 

FrO,ju ~rQ~,-- I exp (iQr)a~ (r)dr (2.7) 
ce l l  

is a 'rotational form factor'. To calculate it we have 
to find the 'rotational pdf' or the corresponding scat- 

i tering length density au(r ) of a molecule interacting 
with the crystal field. The symmetry of this field is the 
site symmetry at the molecular position, a~u (r) then will 
be expanded into the appropriate set of symmetry- 
adapted surface harmonics. If we calculate the rota- 
tional form factor of one shell in a single molecule, 
formula (2.7) simplifies to 

F'°~ (Q)= fcell exp (iQr)a(r)dr. (2.8) 

In X-ray scattering a(r) has to be replaced by the 
probability of finding an electron at r. 

(a) Three-dimensional case 
In case of perfectly rigid molecules the convenient 

set of harmonics belongs to the irreducible representa- 
tion of a group that contains both the elements of the 
site symmetry and the symmetry of the molecule itself. 
We will return to this topic in the next paragraph. For 
three-dimensional scatterers the set of (symmetry- 
adapted) cubic harmonics Kl,,(g2) (van der Lage & 
Bethe, 1947; Altmann & Cracknell, 1965) appears to 
be most useful. We may expand the scattering length 
density a(r) into this complete set of orthonormal func- 
tions 

c~ 21+ I 

a(r)= ~ ~ a,m(r)K,m(£2) (2.9) 
l = o m = l  

where f2=(0,~0) denotes polar angles. When dealing 
with orientationally disordered molecules or mole- 
cules with large librational amplitudes, only a few 

coefficients a~m(r) will be non-zero. For rigid molecules 
the nuclei are confined to a spherical shell of radius 4. 

alto(r) = ClmO(r - Q)/r z. (2.1 O) 

We also expand exp (iQr): 

exp (iQr)=4n ~ izTv(Qr)Kv,,,(t2o)Kt,m,(f2). (2.11) 
l',m' 

f2Q denotes the polar angles of the scattering vector 
Q in a coordinate system defined by the crystallo- 
graphic axes. jt (Qr) are the spherical Bessel functions. 

Inserting equations (2.9) to (2.11) into equation (2.8) 
and integrating over dr, we obtain 

Fr°t(Q) =4zc ~ i~h(QQ)c,,~Kzm(f2o). (2.12) 
l,m 

Here the orthonormality of the harmonics has been 
used. We thus have performed all integrations ana- 
lytically and have reduced the problem to a summation 
over the symmetry-allowed cubic harmonics. The triv- 
ial case l=  0 brings us back to the Fourier transform 
of a spherically symmetric density distribution (Inter- 
national Tables for X-ray Crystallography, 1965). Then 

rrot(Q)=4rCcolJo(QQ)=4JZCo ~ sin (QQ) (2.13) 
QQ 

Because of the orthonormality of the set of functions 
used, we have 4zc. Col =n~,b, where n~ is the number 
of atoms confined to the shell and b their scattering 
length. The higher harmonics modulate the constant 
scattering-length density. 

(b) Two-dimensional case 
We now consider planar molecules that are confined 

to an essentially one-dimensional motion around their 
primary symmetry axis. The motion of the NO;- ion 
in solid KNO3 may be an example for a crystal where 
this approximation applies. The scattering length den- 
sity is then of the form: 

a(r)= 1 O(r-Q)cS(z)f(q),) (2.14) 

We expand f(~0,): 
e o  

f(~0,)= ~ c, ,exp(im~o,)+C. C. (2.15) 
m = 0  

To calculate the structure factor 

U°t(Q)= I a(r) exp (iQr)dr 

we write 

exp (iQr)=exp (iQzz) exp [iQ,r cos (¢0-~0,)] (2.16) 

and expand the second factor 

exp [iQ, r cos (¢0 o -~0,)] 
o o  

=Jo(a,r)+ 2 ~ (i)zJ~(Q,r) cos [l(~oo-~o,)] (2.17) 
l = 1  
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where J,(Qrr) is a Bessel function. Integration over r 
then yields: 

o o  

F ( Q ) =  ~. (i)tJl(Qrq) [cl exp (ilq~o)+C. C .] (2.18) 
/ = 0  

III. Formal development 

To determine which coefficients in the expansion (2.9) 
of a(r) vanish by symmetry, we perform this expansion 
in two coordinate systems. 

The first (unprimed) one is referred to the crystal 
axes; the second (primed) one is fixed in the molecule. 
The atomic positions and therefore the coherent scat- 
tering-length density b(r') in the primed system is 
known, b(r') is expanded in cubic harmonics. 

b(r') = ~. br m,(r ')Kv m,(O' q)') . (3.1) 
/ 'm" 

The expansion coefficients br,,, are given by 

brm,(r') = f sin O'dO'd~o'b(r')K*e,m,(O'(p'). (3.2) 

The advantage of an expansion into symmetry- 
adapted functions is that most of the coefficients 
brm,(r') vanish. 

In X-ray scattering b(r') has to be replaced by the 
electron density 0(r'). All symmetry arguments are the 
same. The only difference is that ~(r') is not known 
exactly, so that (3.2) cannot be evaluated exactly. 
However, as numerical values for the brm' are not 
needed in the following, the formalism applies also for 
X-ray scattering. 

To calculate the scattering-length (or electron) den- 
sity in the unprimed coordinate system, we have to 
know the transformation properties of the cubic har- 
monics. 

Kvm,(0'~o')= ~ Kr,,,,(O~o)U~;?,,,(co). (3.3) 
m "  

co denotes the set of Euler angles that relate the primed 
coordinate system to the unprimed one. Equation (3.3) 
defines the cubic rotator functions (James & Keenan, 
1959). These form an orthogonal and complete set. 
According to (3.2) for a definite orientation co of the 
molecule the scattering length density in the unprimed 
system is 

b(r)= ~ brm,(r)Krm,,(Oq))U~,~?,m,((-o). (3.4) 
l ' m ' m ' "  

To obtain the pdf a(r), we multiply by f(co), the prob- 
ability that the molecule is in an orientation specified 
by the Euler angles o9, and integrate over co: 

I dcof(co)b(r). (3.5) a(r)= 

f(co) may be expanded in cubic rotator functions: 

f (o))= ~ --tam'A(" U~)m,(O)) . (3.6) 
lmm'  

We insert (3.4) and (3.6) into (3.5) and perform the 
integration over co: 

a(r) ~ (z, = Am,,.,b,m,(r)Kz,,(O~o). (3.7) 
lmm' 

On the other hand a(r) may directly be expanded in 
cubic harmonics: 

a(r)= Y. (3.8) 
lm 

Again many of the expansion coefficients al,,(r) are 
zero. Only those K~m(O,~o) which are invariant under 
all operations belonging to the site symmetry, con- 
tribute in (3.8). Expansions (3.7) and (3.8) have to be 
identical. Therefore 

al , . ( r )=  ,1, Ar, m,blm,(r) . (3.9) 
??I' 

From equation (3.9) we see that only a few terms con- 
tribute to the expansion off(e)) in cubic rotator func- 
tions. The site symmetry determines which values of 
m are allowed for a given l and the molecular symmetry 
determines the allowed values of m'. In particular we 
notice, that all a~,,, of a certain order l are zero, if there 
is no cubic harmonic of that order which is invariant 
under all symmetry operations of the molecule. This 
statement is independent of the site symmetry. It has 
been derived under the assumption of perfectly rigid 
molecules. 

Molecules like adamantane and hexamethylene- 
tetramine consist of several shells of atoms and every 
shell has at least the symmetry of the molecule as a 
whole. We may expand the ensemble-averaged scat- 
tering-length density of each shell in cubic harmonics: 

a , ( r )=  ~ a~,(r)Klm(O~o). (3.10) 
1,, 

The expansion coefficients a~m(r) then are not inde- 
pendent of each other. A generalization of (3.9) to 
several shells of atoms reads 

a~m(r) ~ m , (3.11) = Amm,bo,,,(r). 
m' 

The coefficients --tam'Am do not depend on the shell index 
and the constants b'l,,,(r) are easily calculated from the 
known atomic positions in the (primed) coordinate 
system fixed in the molecule. For tetrahedral symmetry 
of the molecule and full cubic site symmetry there is 
at most one non-vanishing -,,,,,A(z) for l<  12, i.e. there is 
only one independent coefficient a~'m of order l. 

IV. Analogy to magnetic systems 

There is an evident analogy between the arrangement 
of electric multipoles and the arrangement in magnetic 
systems (J. Sivardi~re, to be published). We shall 
briefly point out how this analogy enters into the dif- 
fraction patterns as obtained from the disordered and 
ordered phase of a solid which undergoes an orienta- 
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tional phase transition. It will be assumed that the 
Debye-Waller factor for the translational motion of 
the molecules under consideration may be treated as 
isotropic. 

In magnetic systems undergoing a paramagnetic-to- 
antiferromagnetic phase transition there are 'nuclear' 
Bragg peaks, the intensity of which is the same above 
and below the transition temperature. Additional 
superlattice reflexions arising from the magnetic or- 
dering arise at lattice points which have been zone- 
boundary points in the disordered phase. In case of 
ferromagnetic transitions the nuclear Bragg peaks are 
modulated by the additional magnetic contribution be- 
low Tc (which is less favourable for experimental work). 
Starting from almost spherical symmetry in the dis- 
ordered phase, we may identify the reflexions due to 
the isotropic part of the density distribution with the 
nuclear Bragg peaks. These are almost unchanged with 
the transition to the orientationally ordered phase. Ad- 
ditional reflexions arise if an antiferro-ordering occurs. 
It turns out that a synunetry operation, which usually 
appears in context of magnetic systems only, becomes 
important, namely the parity of the cubic harmonics 

Cem ( ~) 

t=O 

Cgm( ¢) 

~m 

5 ° /0 o /5 ° 20 ° 25  ° 

hbrationol amplitude 6" 
(a) 

g=O 
1.0 

0 5  
3 

~o ~oo ,~o 20° 2'5o 
~rohonal amphlude 6" 

(b) 

Fig. 1. (a) Expansion of  a normal ized  Gauss ian  on the pole of  
a unit  sphere in spherical  harmonics .  The expansion coeffi- 
cients cz,,,(a) are normalized by bz,,, their value for a=0. If 
the half-width tr of the Gaussian is large, the expansion con- 
verges rapidly. (b) Expansion of four Gaussians, related by 
tetrahedral symmetry, in cubic harmonics. Explicit expres- 
sions of the relevant harmonics are listed in paper II. 

which is ( - 1 )  z for harmonics of the order/.  This may 
give rise to superlattice reflexions in the ordered phase 
which are well separated into those arising from har- 
monics of odd and even parity. (For more details, see 
the following paper (Press, 1973) referred to as paper 
II). 

Magnetic form factors may certainly be treated in a 
way very similar to the one described in this paper 
(Moon, 1966; Moon, 1971 ; Watson & Freeman, 1961). 
A basic difference arises from the fact, that the r de- 
pendence of the pdf may not be described in such a 
simple way (0-functions) as in the present case, which 
gives rise to r-dependent expansion coefficients ao,(r) 
or equivalently to averaged Bessel functions. 

V. Discussion of the method 

The question, under which conditions the present ap- 
proach is equivalent or superior to conventional meth- 
ods, has to be investigated. For brevity we confine our- 
selves to the discussion of the three-dimensional case. 
All conclusions are the same for two-dimensional mol- 
ecules. An expansion of the pdfs in symmetry-adapted 
harmonics is certainly favourable if only a few hat- 

r o t  monies contribute to F~, (Q), since then the number 
of parameters entering into the problem is small. From 
equation (2.12) we find that two factors are multiply- 
ing Kzm(O, ~), namely jz(QQ) and Czm. 

The second factor has been discussed at length in 
§III .  We have seen that not only high site symmetry 
but also (for rigid molecules) high molecular sym- 
metry strongly reduces the number of non-vanishing 
coefficients. Symmetry does not decide, however, 
whether the series converges rapidly or whether there 
are important contributions from all orders of l. Rapid 
convergence is obtained if the orientational localiza- 
tion of the molecule is not too good. In this case only 
a few terms contribute to (3.6) whence it follows that 
(3.8) also converges rapidly. As explicit expressions 
for the rotator functions <z) U,,m,(W) for l > 6  are not 
found in the literature we discuss the convergence of the 
series (3.8) directly. Two simple examples have been 
treated numerically: 

(i) a normalized Gaussian of increasing width on 
the pole of a unit sphere. The expansion has been per- 
formed in spherical harmonics Yzo(Oq~) [Fig. 1 (a)]; 

(ii) four Gaussians on the sphere, related by tetra- 
hedral symmetry [Fig. l(b)]. 

If the molecules are fixed with zero librational am- 
plitude, the coefficients azm are identical with the ex- 
pansion coefficients btm Of equation (3.1). These are 
easily calculated. For a tetrahedron the following re- 
sult is obtained: b01 = 1, b31 = 3V~-/9, b41 = -  [/7-/3 etc. 
Fig. l(b) shows the normalized quantity ¢Zm(a)/bzm, 
where a is the half-width of the Gaussians. It may 
readily be seen that (3.8) converges rapidly for large 
librational amplitudes. 

To discuss the influence ofjz (Q~) on the convergence 
of (2.11) some relevant low-order spherical Bessel func- 

A C 29A - 3* 
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tions are represented in Fig. 2. As these functions ap- 
proach zero as (QQ)~/1.3.5 . . .  (2l+ 1) for small values 
of their argument, the coefficient of K01 dominates for 
small Q. K01(g2) is constant on the unit sphere. Devia- 
tions from spherical symmetry, i.e. deviations from 
complete orientational disorder, will therefore be visible 
at larger momentum transfers only. Inspection of Fig. 2 
shows, that jz(Qo~) is rising very slowly for higher or- 
ders of l. Whether a certain K~m(g2) can be seen at all 
in the scattered intensity depends on whether j~(QQ) 
attains an appreciable value within the range of Q 
vectors accessible in an experiment. This range is 
limited by the energy spectrum of the reactor and by 
the Debye-Waller factor for the translational motion 
of the molecules. Even if many coefficients ezra are non- 
zero (i.e. for low site symmetry) only a few will ef- 
fectively contribute to the rotational form factor if 
is small. Examples are diatomic molecules like H2, 
N2, 02 etc. (for details see paper II). On the other 
hand, if the radius Q is small, only restricted informa- 
tion on the orientational structure is gained from ex- 
periments over a limited range of Q values. This lack 
of information cannot be circumvented by other meth- 
ods of data analysis. Quite often, different mechanistic 
models lead to equivalent fits of neutron-scattering 
data. If the molecular radius is small and if the low- 
order terms of an expansion in cubic harmonics are 
the same for different models, the coincidence is not 
surprising. 

A clear-cut condition for the superiority of our ap- 
proach over conventional methods cannot be given. 
The following criteria are in favour of our method: 

(i) high symmetry (molecular or site symmetry); 
(ii) large librational amplitudes; 

(iii) small molecular radii. 

Furthermore the approach gives a satisfying physical 
picture if the site symmetry is higher than the molec- 
ular symmetry. Up to now this has been described in 
a somewhat artificial way by oscillations about two or 
more different equilibrium orientations. 

The authors would like to thank Dr F. Hossfeld 
and Dr H. Stiller for stimulating discussions. 

Fig.2. Spherical Bessel functions of integer order. For small 
molecular radii 0 only few of them assume appreciable values 
within the range of experimentally accessible Q values. 
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